Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(2): 1150-1160, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471952

RESUMO

In order to evaluate the feasibility of using Burkholderia sp. Y4 as a cadmium (Cd)-reducing bacterial agent in contaminated wheat fields, the changes in the rhizosphere soil microbial community and Cd available state, as well as the content and transport characteristics of Cd in the wheat root, basal node, internode, and grain under the treatment of strain Y4 were tested using microbial high-throughput sequencing, step-by-step extraction, subcellular distribution, and occurrence analyses. The results showed that root application of strain Y4 significantly reduced the root and grain Cd content of wheat by 7.7% and 30.3%, respectively, compared with that in the control treatment. The Cd content and Cd transfer factor results in wheat vegetative organs showed that strain Y4 reduced the Cd transfer factor from basal node to internode by 79.3%, and Cd content in the wheat internode stem also decreased by 50.9%. The study of Cd occurrence morphology showed that strain Y4 treatment increased the proportion of residual Cd in roots and basal ganglia, decreased the contents of inorganic and water-soluble Cd in roots, and increased the content of residual Cd in basal ganglia. Further examination of the subcellular distribution of Cd showed that the Cd content in root cell walls and basal ganglia cell fluid increased by 21.3% and 98.2%, respectively, indicating that the Cd fixation ability of root cell walls and basal ganglia cell fluid was improved by the strain Y4 treatment. In the rhizosphere soil, it was found that the microbial community structure was changed by strain Y4 application. Under the Y4 treatment, the relative abundance of Burkholderia increased from 9.6% to 11.5%, whereas that of Acidobacteriota decreased. Additionally, the relative abundance of Gemmatimonadales, Pseudomonadales, and Chitinophagales were also increased by strain Y4 treatment. At the same time, the application of strain Y4 increased the pH value of rhizosphere soil by 8.3%. The contents of exchangeable Cd, carbonate-bound Cd, and iron-manganese oxide-bound Cd in the soil decreased by 44.4%, 21.7%, and 15.9%, respectively, whereas the proportion of residual Cd reached 53.6%. Root application of strain Y4 increased the contents of nitrate nitrogen and ammonium nitrogen in the soil by 22.0% and 21.4%, respectively, and the contents of alkaline nitrogen also increased to a certain extent. In conclusion, the root application of strain Y4 not only improved soil nitrogen availability but also inhibited Cd transport and accumulation from contaminated soil to wheat grains in a "two-stage" manner by reducing Cd availability in rhizosphere soil and improving Cd interception and fixation capacity of wheat roots and basal nodes. Therefore, Burkholderia Y4 has application potential as a Cd-reducing and growth-promoting agent in wheat.


Assuntos
Burkholderia , Compostos Férricos , Poluentes do Solo , Cádmio/análise , Triticum , Burkholderia/fisiologia , Fator de Transferência , Solo/química , Nitrogênio/análise , Poluentes do Solo/análise
2.
Huan Jing Ke Xue ; 45(1): 543-554, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216503

RESUMO

This study aimed to clarify the effect of long-term continuous cropping of pepper on soil fungal community structure, reveal the mechanism of continuous cropping obstacles, and provide a theoretical basis for the ecological safety and sustainable development of pepper industry. We took the pepper continuous cropping soil in the vegetable greenhouse planting base of Tongren City as the research object. The diversity and community structure of fungi in farmland soil were analyzed using Illumina MiSeq high-throughput sequencing, the responses of soil physio-chemical properties and fungal community characteristics to long-term continuous pepper cropping were discussed, and the relationships between the characteristics of fungal community structure and environmental factors were determined using CCA and correlation network analysis. The results showed that with the extension of pepper continuous cropping years, the soil pH value and organic matter (OM) content decreased, total phosphorus (TP) and available phosphorus (AP) contents increased, hydrolyzed nitrogen (AN) and available potassium (AK) contents decreased first and then increased, and total nitrogen (TN) and total potassium (TK) contents did not change significantly. Long-term continuous cropping decreased the Chao1 index and observed species index and decreased the Shannon index and Simpson index. The change in continuous cropping years had a significant effect on the relative abundance of soil fungal dominant flora. At the phylum level, the relative abundance of Mortierellomycota decreased with the extension of pepper continuous cropping years, the relative abundance of Ascomycota increased first and then decreased, and the relative abundance of Basidiomycota decreased first and then increased. At the genus level, with the increasing of pepper continuous cropping years, the relative abundance of Fusarium increased, and the relative abundance of Mortierella and Penicillium decreased. In addition, long-term continuous cropping simplified the soil fungal symbiosis network. CCA analysis indicated that pH, OM, TN, AN, AP, and AK were the driving factors of soil fungal community structure, and correlation network analysis showed that pH, OM, TN, TP, TK, AN, AP, and AK were the driving factors of soil fungal community structure, including Fusarium, Lophotrichus, Penicillium, Mortierella, Botryotrichum, Staphylotrichum, Plectosphaerella, and Acremonium. In conclusion, continuous cropping changed the soil physical and chemical properties, affected the diversity and community structure of the soil fungal community, changed the interaction between microorganisms, and destroyed the microecological balance of the soil, which might explain obstacles associated with continuous cropped pepper.


Assuntos
Fusarium , Micobioma , Penicillium , Solo/química , Microbiologia do Solo , Produtos Agrícolas , Nitrogênio , Fósforo , Potássio
3.
Huan Jing Ke Xue ; 44(8): 4416-4428, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694636

RESUMO

In order to understand the status of heavy metal pollution and the resulting ecological risk of farmland soil surrounding the manganese mining area, 174 soil samples were collected, and the heavy metals(Cu, Zn, Pb, Cr, Ni, Mn, As, and Hg) were analyzed. Principal component analysis (PCA) and the positive matrix factorization (PMF) model were used to determine the source of heavy metals in the soils. The single-factor pollution index method, geo-accumulation index method, potential ecological risk assessment method, and US EPA health risk assessment model were used to evaluate the ecological environment risk of heavy metals. The results showed that the average values of Cu, Zn, Cr, Ni, Mn, and Hg exceeded the background value of Guizhou. 100% of Zn samples and 38.86% of Cu samples exceeded the risk screening value for agricultural land soil pollution. Source analysis revealed that the main sources of soil heavy metals were mining emission, mixed agricultural activity and transportation, nature, and agricultural activities. The risk evaluation showed that Ni, Cr, Pb, and As belonged to the clean level, Hg and Cu were in a light pollution stage, Zn fell into the category of moderate contamination, and Mn reached the heavy pollution level. Cu, Zn, Pb, Cr, Ni, Mn, As, and Cd posed low potential ecological risk, while Hg caused a considerable potential ecological risk. In total, the integrated potential ecological risk of heavy metals was ranked "strong", eight types of heavy metals had carcinogenic risks and non-carcinogenic risks for children aged 0-5 years, and the main contributing factors were Cr and Mn, respectively.


Assuntos
Mercúrio , Metais Pesados , Criança , Humanos , Manganês , Fazendas , Chumbo , Poluição Ambiental , Medição de Risco , Solo
4.
Huan Jing Ke Xue ; 44(9): 5204-5213, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699838

RESUMO

To investigate the effects of nano-copper oxide (CuO NPs) on plant growth, physio-biochemical characteristics, and heavy metal content under cadmium stress, a hydroponics experiment was conducted on the effects of single and combined treatments of CuO NPs (0, 10, 20, and 50 mg·L-1) and Cd (0, 1, and 5 µmol·L-1) on the fresh weight, photosynthetic pigment content, MDA content, antioxidant enzyme activity (CAT, POD, SOD, and GR), and Cu and Cd contents in Brassica chinensis L. The results showed that under the single addition of CuO NPs, the fresh weight and activities of CAT, POD, and GR were inhibited as a whole. Photosynthetic pigment content and SOD activity increased first and then decreased with the increase in CuO NPs concentration, whereas MDA content in leaves and roots, and Cu content in subcells of B. chinensis L. increased with the increasing of CuO NPs. As compared with that in the control, CuO NPs promoted the growth of B. chinensis L., and the fresh weight increased by 8.70%-44.87% at 1 µmol·L-1 Cd. When the content of Cd was up to 5 µmol·L-1, a low content (10 mg·L-1) of CuO NPs promoted the growth of B. chinensis L., whereas a high concentration (50 mg·L-1) showed an inhibitory effect. The addition of CuO NPs could increase photosynthetic pigment and MDA contents under different Cd stress, and MDA content in leaves and roots of B. chinensis L. increased by 4.34%-36.27% and 13.43%-131.04%, respectively, than that in the control groups. Under the same concentration of 1 µmol·L-1 Cd, the addition of CuO NPs decreased the activities of CAT and GR, whereas the activity of POD increased. When the content of Cd was up to 5 µmol·L-1, CuO NPs increased the POD activity and inhibited the activity of SOD and GR. The activities of CAT and CAT in the leaves of B. chinensis L. initially showed an increasing and then decreasing trend. CuO NPs and Cd showed antagonistic effects, the maximum reduction of Cd content in leaves and roots of Brassica chinensis L. under 1 µmol·L-1 Cd treatment was 45.64% and 33.39%, and that under 5 µmol·L-1 Cd treatment was 18.25% and 25.35%, respectively. The content of Cu and Cd in subcellular organs of the plants decreased, but the proportion of soluble components increased. These results indicated that CuO NPs at low concentrations promoted plant growth under Cd stress and further inhibited the absorption of Cd but increased the oxidative damage to B. chinensis L.


Assuntos
Brassica , Metais Pesados , Cobre , Cádmio/toxicidade , Metais Pesados/toxicidade , Antioxidantes , Óxidos , Superóxido Dismutase
5.
Huan Jing Ke Xue ; 43(8): 4342-4352, 2022 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-35971730

RESUMO

In order to investigate the characteristics of soil microbial community structure and their relationships with environmental factors in the surrounding farmlands of a mercury mining region, we analyzed soil physical and chemical properties, Hg pollution, enzyme activity, and microbial community structure characteristics in the surrounding farmlands of a mercury mining region in Tong Ren (Bahuang Town, Bijiang District; Huaqiao Town, Shiqian County; Kaide Town, Jiangkou County; and Chuantong town, Bijiang District; referred to as BJ, SQ, JK, and TR, respectively). The relationships between the characteristics of soil microbial community structure and environmental factors were determined using redundancy analysis (RDA) and correlation network analysis. The results showed that the degree of soil Hg contamination varied depending on the sampling locations in the study region. The soils in JK and TR were categorized as having light-level Hg contamination, whereas those in SQ and BJ were at moderate-level Hg contamination. The potential ecological risk indicated that the soil suffered different degrees of Hg contamination (TR was at a medium level, BJ and JK were at a serious level, and SQ was at a high severe level of pollution). The dominant bacteria flora were Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi, whereas the dominant flora of fungi included Ascomycota, Basidiomycota, and Mortierellomycota. RDA analysis showed that pH, sucrase (SC), and catalase (CAT) activities were the key environmental factors of soil bacterial community structure. Soil pH, available nitrogen (AN), available potassium (AK), HCl-Hg, acid phosphatase (ACP), and urease (URE) activities were the key environmental factors that affected soil fungal community structure. Correlation network analysis indicated that pH, available phosphorus (AP), HCl-Hg, SC, ACP, and CAT were the key environmental factors affecting soil bacterial community structure, including Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, Rokubacteria, and Planctomycetes. AK, pH, total nitrogen (TN), AP, AN, ACP, URE, and SC activities were the key environmental factors affecting soil fungal community structure, such as Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota, Chytridiomycota, Rozellomycota, Kickxellomycota, and Mucoromycota.


Assuntos
Actinobacteria , Mercúrio , Microbiota , Acidobacteria , Bactérias , Fazendas , Fungos , Mineração , Nitrogênio , Proteobactérias , Solo/química , Microbiologia do Solo
6.
Huan Jing Ke Xue ; 43(7): 3682-3691, 2022 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-35791551

RESUMO

The aim of this study was to investigate the structural characteristics of biochar with different micro/nano particle sizes and its effect on the adsorption performance of Cd2+. Corn stalk biochar with different particle sizes (180-250 µm, 50-75 µm, and ≤ 20 µm, denoted as BC-1, BC-2, and BC-3, respectively) were prepared using the sieving and ball milling method. The structural properties of different particle sizes of biochar were analyzed via elemental analysis, laser particle size analysis, SEM, BET, FTIR, and XPS. Additionally, the adsorption mechanisms of Cd2+ by three particle sizes of biochar under initial Cd2+ concentrations, adsorption times, and pH conditions were comparatively studied using static adsorption experiments. The results showed that with the decrease in particle size, the pH and zeta potential of biochar were reduced; the aromaticity and polarity decreased; the specific surface area and pore volume increased; and the intensity of the characteristic peaks containing OH, C[FY=,1]C/C[FY=,1]O, and C-O groups increased. The adsorption kinetics of Cd2+ with different particle diameters of biochar were in accordance with the pseudo-secondary kinetic model, with chemisorption dominating. The equilibrium times were in the decreasing order of BC-1 (540 min)>BC-2 (360 min)>BC-3 (80 min). The Langmuir model could better fit the adsorption isotherm process of Cd2+ on biochar of different particle sizes (R2>0.97), and the maximum adsorption capacity of Cd2+ increased with the decrease in particle size, which was expressed as BC-3 (74.43 mg·g-1)>BC-2 (45.71 mg·g-1)>BC-1 (44.59 mg·g-1). The main mechanisms of Cd2+adsorption by biochar were electrostatic attraction, surface complexation, and cation-π interaction.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Cádmio/química , Carvão Vegetal/química , Poluentes Químicos da Água/química
7.
Huan Jing Ke Xue ; 43(3): 1596-1605, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258224

RESUMO

A field trial was conducted to identify the key factors affecting intraspecific variation in the cadmium (Cd) content in the grain of winter wheat. Three wheat cultivars with low Cd accumulation and two wheat cultivars with high Cd accumulation were planted. The Cd accumulation and transport and ionomic traits were examined in different organs of the tested wheat cultivars. Additionally, correlation analysis and principal component analysis were used to identify the key plant organs, translocation pathways, and elements that determine the intraspecific variation in the Cd content in wheat grain. The results showed that the bioaccumulation factors of Cd in glume, rachis, internode 1, and node 1, as well as the transport factors of Cd from rachis to grain, from rachis to glume, from internode 1 to rachis, and from node 1 to internode 1, were significantly correlated with Cd bioaccumulation factors in grain. The above-mentioned bioaccumulation factors and transport factors of Cd made a great contribution to the principal components that could discriminate between the wheat cultivars with low and high Cd accumulation and were significantly different among cultivars. Therefore, glume, rachis, internode 1, and node 1 were the key organs affecting the genotype differences in Cd content in wheat grain, and Cd translocation from rachis to grain, from rachis to glume, from internode 1 to rachis, and from node 1 to internode 1 were the key pathways controlling the variety differences in Cd accumulation in wheat grain. The analysis of wheat ionome showed that the bioaccumulation factors of Mg and Mn in the key organs and the transport factors of Mo, Cr, and Pb in the key transport pathways were significantly correlated with the bioaccumulation factor of Cd in wheat grain and contributed greatly to the differentiation between the wheat cultivars with low and high Cd accumulation in the principal component analyses. Thus, in the above-mentioned key organs and transport pathways, Mg, Mn, Mo, Cr, and Pb were the key elements affecting the genotype differences in Cd content in wheat grain.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Grão Comestível/química , Estações do Ano , Solo , Poluentes do Solo/análise , Triticum/genética , Triticum/metabolismo
8.
Huan Jing Ke Xue ; 43(2): 965-974, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075870

RESUMO

In order to ensure the safe production of vegetables in Pb-contaminated farmland under the complex interactions of an extreme geological background area and human activities in Southwest China, 32 types of widely planted vegetable varieties in the southwest region were collected. Correlation analysis, multiple linear regression analysis, and other methods were used to study the accumulation of Pb in soil-vegetables and the key constraints. The threshold of soil Pb ecological security in farmland in southwest China was determined by the method of species sensitivity distribution. The results showed that ω(Pb) of the soils was 47.59-462.38 mg·kg-1, which was 1.88 times higher than that of the background value of soil Pb in Yunnan Province (90 mg·kg-1), and 68.40% of the soil samples exceeded the screening value of the "Soil Environmental Quality Agricultural Land Soil Pollution Risk Management Standard" (GB 15618-2018). The content of Pb in the edible parts of vegetable crops ranged from 0.02 to 0.49 mg·kg-1, and the exceeding rate reached 20.49%. Pb concentration in the vegetables was in the decreasing sequence of leafy vegetables > roots and stems vegetables > eggplant vegetables > edible bean vegetables > pepper vegetables. Based on soil pH, OM, and CEC, the model of Pb accumulation in vegetables was constructed, in which pH was the first critical factor affecting Pb accumulation in vegetables. The sensitivity index of vegetable Pb species showed that leafy vegetables, eggplant vegetables, and a small number of frame bean vegetables were less sensitive to Pb. The soil Pb classification thresholds of the three types (priority protection, safe use, and strict control) of areas for vegetable safety production was ≤ 100, 100-353, and ≥ 353 mg·kg-1, respectively.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Humanos , Chumbo , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras
9.
Huan Jing Ke Xue ; 41(11): 5151-5159, 2020 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124259

RESUMO

A pot experiment was conducted to reveal the effects of intercropping a low-cadmium (Cd) accumulating cultivar and a Cd hyperaccumulator on the safe utilization and phytoextraction of Cd-polluted soils. Two cultivars of Brassica chinensis L. (the low-Cd accumulating cultivar Huajun, and the common cultivar Hanlü), were intercropped with four cultivars of Tagetes patula L. (Dwarf Red, Dwarf Yellow, Tall Red, and Tall Yellow). We examined the biomass, photosynthetic characteristics, and Cd accumulation in the plants and available Cd content and dissolved organic carbon (DOC) content in the soils. The results show that under the intercropping treatments, the biomass of B. chinensis decreased significantly and those of T. patula increased significantly, compared with the monoculture treatments. When intercropped with T. patula, the net photosynthetic rate, stomatal conductance, and transpiration rate in the leaves of B. chinensis decreased significantly, compared with the monoculture treatments. When Huajun was intercropped with Dwarf Red, the shoot Cd content of Huajun significantly decreased by 14.5%, and that of Dwarf Red increased significantly by 36.5% compared with the monoculture. Under the other intercropping treatments, the shoot Cd content of B. chinensis increased significantly, or showed no significant change, and that of T. patula showed no significant change. Under the intercropping treatments, the total amount of Cd in the shoot of B. chinensis decreased significantly, and that of T. patula increased significantly, compared with the monoculture. There were no significant differences in the Cd extraction ratios between the intercropping treatments and the monoculture of T. patula. The shoot Cd content of B. chinensis was significantly correlated with soil available Cd content and DOC content (P<0.01 and P<0.05, respectively). In conclusion, the intercropping treatment of Huajun and Dwarf Red significantly reduced shoot Cd content in B. chinensis and increased that in T. patula, and it did not affect the Cd extraction ratio. This is suitable for the safe utilization and phytoextraction of Cd-polluted soils.


Assuntos
Brassica , Poluentes do Solo , Tagetes , Biodegradação Ambiental , Cádmio/análise , Solo , Poluentes do Solo/análise
10.
Huan Jing Ke Xue ; 41(7): 3426-3433, 2020 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608917

RESUMO

Field experiments were conducted to investigate the effects of Mn-based modified rice husk biochar on soil organic carbon, aggregate structure, mass load, and the content of available Cd in aggregates. The results showed that the concentration of soil organic carbon increased gradually with additional modified biochar, resulting in a 3.2%-32% increase compared with the CK. Modified biochar improved the composition structure and stability of soil aggregates, and increased the amount of large aggregates (5-8 mm and 2-5 mm), while micro-aggregate production was inhibited (≤0.25 mm). Compared with the CK, mean weight diameter (MWD), geometrical mean weight (GMD), and soil aggregate structural body (R0.25) of the soil aggregates increased by 15.1%-20.3%, 8.1%-22.4%, and 0.43%-7.6%, respectively. Cd was preferentially enriched on small aggregates, and the mass loading of Cd in soil aggregates increased gradually with decreasing particle size. The distribution factor of Cd showed significant enrichment in the 0.5-1 mm and 0.25-0.5 mm grain sizes, whereas it showed a clear loss in particle sizes of 5-8 mm and 2-5 mm. The addition of modified biochar reduced the content of DTPA-Cd in soil aggregates, causing 7.6%-15.1%, 15.6%-24.3%, 3.6%-13.8%, and 11.6%-13.7% reductions in 5-8, 2-5, 0.5-1.0, and 0.25-0.5 mm particle sizes, respectively. In general, modified biochar not only has a favorable optimizing function on the structure of soil aggregates, but also decreases the content of available Cd in different sizes of soil aggregates, increasing its significance in the remediation of Cd-contaminated soil.

11.
Huan Jing Ke Xue ; 41(1): 293-303, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854930

RESUMO

To enhance the adsorption capacity of sepiolite (Sep) on Cd2+ in solution, an acid-base Sep (ABsep) was obtained using the method of combined acid-base modification. The structural properties of Sep and ABsep were analyzed by adsorption-desorption isotherms of N2, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). Static adsorption experiments were carried out to evaluate the effects of time, mass ratio of ABsep/Cd2+, temperature, adsorbent dose, pH, and co-existing ions on the adsorption of Cd2+ by ABsep. The results showed that the pore structure of the ABsep was more developed than that of Sep. In comparison to Sep, the specific surface area, average pore diameter, and pore volume of ABsep increased by 66.1%, 15.7%, and 34.8%, respectively, and the exchangeable ion contents also increased. The main components of the ABsep were SiO2 and Mg(OH)2. The adsorption process of Cd2+ by Sep and ABsep could be well fitted with a pseudo-second-order kinetic equation and Langmuir isotherm, and both were spontaneous endothermic reactions, which were mainly chemical adsorption along with physical adsorption. The best mass ratio of ABsep:Cd2+ was 3:1, and the maximum saturated adsorption capacity fitted by the Sips model of the ABsep on Cd2+ at 298 K was 142.43 mg·g-1, which was 3.55 times that of Sep. As the adsorbent dose increased, the adsorption amounts of Cd2+ first increased and then decreased, with the optimum dose being 0.3 g·L-1. The amount of Cd2+ adsorption by the ABsep increased with the initial pH of the solution, whereby the best pH was 7. We also found that the presence of K+, Na+, Mg2+, and Ca2+ at different concentrations could inhibit the adsorption of Cd2+, whereby the inhibition of Mg2+ was the highest.

12.
Huan Jing Ke Xue ; 41(1): 469-478, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854950

RESUMO

We explore the effects of different passivating agents on livestock manure treatment by using chicken manure and straw as raw materials and thermophilic rapid fermentation. We investigate the effects of sepiolite (SE), calcium magnesium phosphate fertilizer (NP), biochar (BI), compounds of sepiolite plus calcium magnesium phosphate fertilizer (S+N), sepiolite plus biochar (S+B), calcium magnesium phosphate fertilizer plus biochar (N+B), and sepiolite plus calcium magnesium phosphate fertilizer and biochar (SNB) on the physical and chemical characteristics, heavy metal fraction and distribution, and organic matter content in chicken manure compost. The results showed that the addition of different passivating agents significantly increased the pH in chicken manure organic fertilizer (P<0.05). The seed germination rate was increased after applying of passivation agents, being>80%, and the germination inhibition rate decreased accordingly, whereas the values of electric conductivity (EC) and organic carbon were inhibited. The total nitrogen content and carbon/nitrogen ratio (C/N) were lower than of those before composting, and all of the indicators reached the standard of organic fertilizer maturity. However, differences among the groups after composting were that the pH increase in the compounding treatment was comparatively higher, and that the EC decreased significantly under the treatment of the single sepiolite and calcium magnesium phosphate, whereas the total nitrogen content and C/N ratio of organic carbon were not significantly different in each group. Although the total amount of heavy metals in our organic chicken manure fertilizer increased due to a concentration effect, the proportion of exchangeable heavy metals in the fertilizer decreased, and while the ratio of the residual heavy metals increased. The passivation effect on heavy metals under combined treatments of different materials was better than that of a single agent, and the SNB treatment had the best effect on the passivation of Ni, Zn, As, and Pb. After composting treatment, the concentrations of humic substances (HS) and humic acid (HA) increased significantly (P<0.05), and the highest concentrations increased by 19.8% and 78.9%, respectively. The amount of fulvic acid (FA) decreased by 4.47%-20.11% compared with the initial conditions. Infrared spectroscopy analysis showed that the small molecular substances of polysaccharides increased after composting. In summary, the addition of a passivation agent can promote the heavy metal passivation in chicken manure organic fertilizers to potentially render the compost as harmless.


Assuntos
Compostagem , Esterco , Metais Pesados/análise , Poluentes do Solo/análise , Animais , Galinhas
13.
Huan Jing Ke Xue ; 39(9): 4375-4384, 2018 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-30188083

RESUMO

One hundred and twenty types of chicken manure organic fertilizer samples were collected from five provinces and two cities in the Huang-Huai-Hai region, to investigate heavy metal content, fractionation, and environmental risk through toxicity characteristic leaching procedures. Results showed that content of heavy metals in chicken manure organic fertilizer varied greatly, in the order of Zn > Cu > Pb > As > Cd. When compared with the standard for organic manure, ratios of Cd, As, and Pb exceeded the standard by 6.7%, 47.05%, and 14.28%, respectively. Moreover, the content of heavy metals varied significantly in different provinces. Cd and Zn in organic manure fertilizers were mainly Fe and Mn oxide-bound fractions, accounting for 37.3% and 43.79%, respectively. However, the proportion of residual fractions of Pb, organically-bound fractions of Cu, and exchangeable forms of As were higher. Contents of TCLP-Zn,-Cu,-Cd,-Pb and-As in organic manure were 41.11, 33.3, 0.07, 1.25, and 0.21 mg·kg-1, respectively. The number of samples in which Zn and Pb in organic manure exceeded the standard was 6 and 5, respectively, with these mainly obtained from Hebei and Jiangsu provinces. There was a significant correlation between total content of Zn, Cu, Cd, and As in organic manure and content of TCLP (P<0.05). Based on an annual manure application rate of chicken manure of 15 t·hm-2, safe application of chicken manure is in the order of Henan > Tianjin > Anhui=Shandong=Jiangsu > Hebei > Beijin.


Assuntos
Fertilizantes , Esterco/análise , Metais Pesados/análise , Poluentes do Solo/análise , Animais , Galinhas , Cidades , Monitoramento Ambiental , Medição de Risco
14.
Huan Jing Ke Xue ; 39(6): 2944-2952, 2018 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965654

RESUMO

Two cultivars of pakchoi with different cadmium (Cd) accumulation were grown in nutrient solutions containing low and sufficient zinc (Zn) levels. ZnSO4 and ZnNa2 EDTA were applied as foliar fertilizers. The bioaccessibilities of Cd and Zn in pakchoi were assessed by the in vitro digestion method, and the bioaccessible established daily intakes (BEDI) of Cd and Zn from pakchoi were calculated. The effect of foliar zinc application on concentrations, bioaccessibilities, and BEDIs of Cd and Zn in pakchoi was evaluated. Results show that the Cd concentrations in shoots of the tested pakchoi cultivars under sufficient Zn condition were significantly lower than those under low Zn condition, and foliar application of ZnNa2 EDTA significantly decreased the Cd concentrations of pakchoi. The tested pakchoi cultivars with sufficient Zn had a significantly higher mean shoot Zn concentration than those with low Zn. Foliar Zn treatments significantly increased shoot Zn concentrations of pakchoi, with the highest in the ZnSO4 treatment. Cd bioaccessibility in the tested pakchoi cultivars with sufficient Zn was significantly lower than that with low Zn. Foliar applied Zn could significantly reduce Cd bioaccessibility in the gastric phase, with a maximal reduction of 35.81% compared to the control. Foliar treatment with ZnSO4 could significantly decrease Cd bioaccessibility in the small intestinal phase, with a maximal reduction of 59.24% compared to the control. Foliar Zn treatments reduced significantly the Zn bioaccessibility of pakchoi in the gastric and small intestinal phases, with a maximal reduction of 68.90% compared to the control. The reduction of Zn bioaccessibility was higher in the ZnSO4 treatment than in the ZnNa2 EDTA treatment. Via the consumption of the Cd-contaminated common cultivar Hanlv, the BEDI values of Cd were higher than that of the provisional tolerable daily intake (PTDI) standard of WHO [0.83 µg·(kg·d)-1]. However, via the consumption of the low-Cd accumulating cultivar Huajun or pakchoi with foliar application of ZnSO4, the BEDI values of Cd decreased significantly and were below the PTDI value. Via the consumption of pakchoi in the control or low-level ZnNa2 EDTA treatments, the BEDI values of Zn were below that of the recommended nutrient intake for Zn. However, via the consumption of pakchoi with foliar application of ZnSO4 or high-level ZnNa2 EDTA, the BEDI values of Zn were higher than that of the recommended nutrient intake and met the human needs for Zn from vegetables. Under the ZnSO4 treatment, the BEDI values of Zn from pakchoi were the highest. In conclusion, foliar zinc application could significantly reduce the bioaccessibilities of Cd and Zn in pakchoi and the BEDI values of Cd and increase the BEDI values of Zn. Foliar application with ZnSO4 was the most suitable treatment to reduce Cd intake and increase Zn intake from pakchoi.


Assuntos
Cádmio/metabolismo , Fertilizantes , Poluentes do Solo/metabolismo , Verduras/metabolismo , Zinco/metabolismo
15.
Huan Jing Ke Xue ; 35(12): 4720-6, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25826946

RESUMO

A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Cádmio/análise , Catalase/metabolismo , Chumbo/análise , Silicatos de Magnésio/química , Oryza/química , Microbiologia do Solo , Urease/metabolismo , beta-Frutofuranosidase/química
16.
Huan Jing Ke Xue ; 34(9): 3716-21, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24289029

RESUMO

Biomass-based materials such as biochar have a good performance in heavy metal adsorption. The adsorption of Cd2+ on biochar converted from cotton straw was studied. Adsorption isotherm, kinetics and effect factors such as temperature, pH and ionic strength were investigated. The adsorption of Cd2+ on biochar can be fitted by the Freundlich isotherm better than the Langmuir isotherm. The maximum adsorption amounts of Cd2+ at different temperatures were 9.738 mg x g(-1) (288.15 K), 10.14 mg x g(-1) (298.15 K), 10.40 mg x g(-1) (308.15 K) and 10.71 mg x g(-1) (318.15 K), respectively. The free energies AG(theta) were from -8.346 kJ x mol(-1) to -10.276 kJ x mol(-1) at different temperatures, indicating that the adsorption of Cd2+ onto biochar is spontaneous and is an endothermic process. The adsorption process can reach equilibrium within 40 minutes and can be fitted by the pseudo second order kinetic model. pH showed a significant effect on the adsorption of Cd2+ on biochar in the range of 2-8. The adsorption amount of Cd2+ on biochar shows a reducing trend with the increasing ionic strength.


Assuntos
Cádmio/química , Carvão Vegetal/química , Adsorção , Cinética , Temperatura
17.
Huan Jing Ke Xue ; 30(10): 3028-35, 2009 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-19968126

RESUMO

Bidens pilosa L. has been identified as a newly found Cd-hyperaccumulator. In the present study, the characteristics of its Cd tolerance (growth response and physiological and biochemical characteristics) and accumulation were examined. The results showed that low Cd treatments (< or =32 mg/kg) could enhance plant growth, the dry biomass of shoot and root increased by 32.4%-44.7% and 29.1%-57.6%, respectively, at Cd concentrations 8-32 mg/kg when compared with the control. The shoot dry biomass reached a maximum of 0.22 g/pot at a concentration 8 mg/kg of Cd. Meanwhile, under different Cd treatments, chlorophyll (Chl) and soluble protein contents in leaves slightly decreased, resulting in 23.3% and 41.5% reduction, respectively, compared with the control. The activities of superoxide dismutase (SOD) firstly decreased and then increased with increasing Cd concentration. Peroxidase (POD) activities and malondialdehyde (MDA) contents increased with increasing Cd concentration, with 1.2-6.6 and 1.1-1.5 times increase, respectively, relative to the control. However, the definite negative effects on the plant growth and characteristics of physiology and biochemistry were observed at higher Cd concentrations (50-100 mg/kg). In gradual experiments, the values of bioaccumulation and translocation were more than 1.0, furthermore, the concentration of Cd in shoots reached 119.1 mg/kg at the soil Cd level of 100 mg/kg, showing B. pilosa has the basic characteristics of a Cd-hyperaccumulator. The results above indicated that B. pilosa has strong capacity of Cd tolerance and accumulation, so it has potential and valuable application to phytoremediation of contaminated soils by Cd.


Assuntos
Bidens/metabolismo , Cádmio/metabolismo , Tolerância a Medicamentos/fisiologia , Plântula/metabolismo , Poluentes do Solo/metabolismo , Absorção , Biodegradação Ambiental
18.
J Hazard Mater ; 165(1-3): 1023-8, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19070954

RESUMO

Joint effects of arsenic (As) and cadmium (Cd) on the growth of Bidens pilosa L. and its uptake and accumulation of As and Cd were investigated using the field pot-culture experiment. The results showed that single Cd (

Assuntos
Arsênio/farmacocinética , Bidens/crescimento & desenvolvimento , Bidens/metabolismo , Biodegradação Ambiental , Cádmio/farmacocinética , Arsênio/farmacologia , Cádmio/farmacologia , Metais/metabolismo , Metais/farmacocinética , Metais/farmacologia
19.
Huan Jing Ke Xue ; 28(6): 1355-60, 2007 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-17674749

RESUMO

Rorippa globosa has been identified as a new Cd-hyperaccumulating plant species. In the present study, growth responses of Rorippa globosa and its accumulation characteristics of Cd and As were examined under the condition of Cd-As combined pollution. The results showed that Cd and As had an antagonistic effect on enhancing the growth of the plants and Cd uptake and accumulation under the low concentration Cd and As treatments. When Cd and As concentrations were 10 mg/kg and 50 mg/kg, the highest height of the plants and the dry weight of shoots were up to 35.9 cm and 2.2 g/pot, respectively; and the accumulation of Cd in the leaves under the combined pollution was higher than that at the same level under single Cd pollution. However, there were synergic adverse effects on plant growth and Cd uptake under the high concentration Cd and As combined pollution. Meanwhile the accumulation of As in the roots was higher than that in the shoots, the translocation factor < or = 0.3 and the bioaccumulation factor < or = 0.6, which showed that Rorippa globosa had an excluding effect on As uptake. These results confirmed that Rorippa globosa had the strong tolerance ability to the Cd-As combined pollution, and the potential applied to phytoremediation of contaminated soil by Cd and As.


Assuntos
Arsênio/metabolismo , Cádmio/metabolismo , Rorippa/crescimento & desenvolvimento , Rorippa/metabolismo , Poluentes do Solo/metabolismo , Arsênio/toxicidade , Biodegradação Ambiental , Cádmio/toxicidade , Rorippa/efeitos dos fármacos , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...